Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Eng Des Sel ; 362023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-37879093

RESUMEN

Enzyme design is an important application of computational protein design (CPD). It can benefit enormously from the additional chemistries provided by noncanonical amino acids (ncAAs). These can be incorporated into an 'expanded' genetic code, and introduced in vivo into target proteins. The key step for genetic code expansion is to engineer an aminoacyl-transfer RNA (tRNA) synthetase (aaRS) and an associated tRNA that handles the ncAA. Experimental directed evolution has been successfully used to engineer aaRSs and incorporate over 200 ncAAs into expanded codes. But directed evolution has severe limits, and is not yet applicable to noncanonical AA backbones. CPD can help address several of its limitations, and has begun to be applied to this problem. We review efforts to redesign aaRSs, studies that designed new proteins and functionalities with the help of ncAAs, and some of the method developments that have been used, such as adaptive landscape flattening Monte Carlo, which allows an enzyme to be redesigned with substrate or transition state binding as the design target.


Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Aminoácidos/química , Código Genético , Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
Protein Sci ; 32(9): e4738, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37518893

RESUMEN

Amino acids (AAs) with a noncanonical backbone would be a valuable tool for protein engineering, enabling new structural motifs and building blocks. To incorporate them into an expanded genetic code, the first, key step is to obtain an appropriate aminoacyl-tRNA synthetase. Currently, directed evolution is not available to optimize AAs with noncanonical backbones, since an appropriate selective pressure has not been discovered. Computational protein design (CPD) is an alternative. We used a new CPD method to redesign MetRS and increase its activity towards ß-Met, which has an extra backbone methylene. The new method considered a few active site positions for design and used a Monte Carlo exploration of the corresponding sequence space. During the exploration, a bias energy was adaptively learned, such that the free energy landscape of the apo enzyme was flattened. Enzyme variants could then be sampled, in the presence of the ligand and the bias energy, according to their ß-Met binding affinities. Eighteen predicted variants were chosen for experimental testing; 10 exhibited detectable activity for ß-Met adenylation. Top predicted hits were characterized experimentally in detail. Dissociation constants, catalytic rates, and Michaelis constants for both α-Met and ß-Met were measured. The best mutant retained a preference for α-Met over ß-Met; however, the preference was reduced, compared to the wildtype, by a factor of 29. For this mutant, high resolution crystal structures were obtained in complex with both α-Met and ß-Met, indicating that the predicted, active conformation of ß-Met in the active site was retained.


Asunto(s)
Aminoacil-ARNt Sintetasas , Metionina-ARNt Ligasa , Metionina-ARNt Ligasa/química , Metionina/química , Aminoacil-ARNt Sintetasas/metabolismo , Racemetionina , Aminoácidos , Sitios de Unión
3.
Proc Natl Acad Sci U S A ; 120(6): e2211098120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730204

RESUMEN

The segmented RNA genome of influenza A viruses (IAVs) enables viral evolution through genetic reassortment after multiple IAVs coinfect the same cell, leading to viruses harboring combinations of eight genomic segments from distinct parental viruses. Existing data indicate that reassortant genotypes are not equiprobable; however, the low throughput of available virology techniques does not allow quantitative analysis. Here, we have developed a high-throughput single-cell droplet microfluidic system allowing encapsulation of IAV-infected cells, each cell being infected by a single progeny virion resulting from a coinfection process. Customized barcoded primers for targeted viral RNA sequencing enabled the analysis of 18,422 viral genotypes resulting from coinfection with two circulating human H1N1pdm09 and H3N2 IAVs. Results were highly reproducible, confirmed that genetic reassortment is far from random, and allowed accurate quantification of reassortants including rare events. In total, 159 out of the 254 possible reassortant genotypes were observed but with widely varied prevalence (from 0.038 to 8.45%). In cells where eight segments were detected, all 112 possible pairwise combinations of segments were observed. The inclusion of data from single cells where less than eight segments were detected allowed analysis of pairwise cosegregation between segments with very high confidence. Direct coupling analysis accurately predicted the fraction of pairwise segments and full genotypes. Overall, our results indicate that a large proportion of reassortant genotypes can emerge upon coinfection and be detected over a wide range of frequencies, highlighting the power of our tool for systematic and exhaustive monitoring of the reassortment potential of IAVs.


Asunto(s)
Coinfección , Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae , Virus Reordenados/genética , ARN Viral/genética , Análisis de Secuencia de ARN
4.
PLoS Comput Biol ; 18(8): e1010448, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36026505

RESUMEN

We propose a novel heuristic to predict RNA secondary structure formation pathways that has two components: (i) a folding algorithm and (ii) a kinetic ansatz. This heuristic is inspired by the kinetic partitioning mechanism, by which molecules follow alternative folding pathways to their native structure, some much faster than others. Similarly, our algorithm RAFFT starts by generating an ensemble of concurrent folding pathways ending in multiple metastable structures, which is in contrast with traditional thermodynamic approaches that find single structures with minimal free energies. When we constrained the algorithm to predict only 50 structures per sequence, near-native structures were found for RNA molecules of length ≤ 200 nucleotides. Our heuristic has been tested on the coronavirus frameshifting stimulation element (CFSE): an ensemble of 68 distinct structures allowed us to produce complete folding kinetic trajectories, whereas known methods require evaluating millions of sub-optimal structures to achieve this result. Thanks to the fast Fourier transform on which RAFFT (RNA folding Algorithm wih Fast Fourier Transform) is based, these computations are efficient, with complexity [Formula: see text].


Asunto(s)
Pliegue del ARN , ARN , Algoritmos , Análisis de Fourier , Conformación de Ácido Nucleico , ARN/genética , Termodinámica
5.
Methods Mol Biol ; 2405: 403-424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298824

RESUMEN

The design of proteins and miniproteins is an important challenge. Designed variants should be stable, meaning the folded/unfolded free energy difference should be large enough. Thus, the unfolded state plays a central role. An extended peptide model is often used, where side chains interact with solvent and nearby backbone, but not each other. The unfolded energy is then a function of sequence composition only and can be empirically parametrized. If the space of sequences is explored with a Monte Carlo procedure, protein variants will be sampled according to a well-defined Boltzmann probability distribution. We can then choose unfolded model parameters to maximize the probability of sampling native-like sequences. This leads to a well-defined maximum likelihood framework. We present an iterative algorithm that follows the likelihood gradient. The method is presented in the context of our Proteus software, as a detailed downloadable tutorial. The unfolded model is combined with a folded model that uses molecular mechanics and a Generalized Born solvent. It was optimized for three PDZ domains and then used to redesign them. The sequences sampled are native-like and similar to a recent PDZ design study that was experimentally validated.


Asunto(s)
Pliegue de Proteína , Proteínas , Bases del Conocimiento , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/genética , Proteínas/química
6.
Methods Mol Biol ; 2256: 237-255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014526

RESUMEN

This chapter describes two computational methods for PDZ-peptide binding: high-throughput computational protein design (CPD) and a medium-throughput approach combining molecular dynamics for conformational sampling with a Poisson-Boltzmann (PB) Linear Interaction Energy for scoring. A new CPD method is outlined, which uses adaptive Monte Carlo simulations to efficiently sample peptide variants that tightly bind a PDZ domain, and provides at the same time precise estimates of their relative binding free energies. A detailed protocol is described based on the Proteus CPD software. The medium-throughput approach can be performed with standard MD and PB software, such as NAMD and Charmm. For 40 complexes between Tiam1 and peptide ligands, it gave high a2ccuracy, with mean errors of around 0.5 kcal/mol for relative binding free energies and no large errors. It requires a moderate amount of parameter fitting before it can be applied, and its transferability to other protein families is still untested.


Asunto(s)
Simulación de Dinámica Molecular , Método de Montecarlo , Dominios PDZ , Fragmentos de Péptidos/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Termodinámica
7.
J Phys Chem A ; 124(51): 10637-10648, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33170681

RESUMEN

We describe methods for physics-based protein design and some recent applications from our work. We present the physical interpretation of a MC simulation in sequence space and show that sequences and conformations form a well-defined statistical ensemble, explored with Monte Carlo and Boltzmann sampling. The folded state energy combines molecular mechanics for solutes with continuum electrostatics for solvent. We usually assume one or a few fixed protein backbone structures and discrete side chain rotamers. Methods based on molecular dynamics, which introduce additional backbone and side chain flexibility, are under development. The redesign of a PDZ domain and an aminoacyl-tRNA synthetase enzyme were successful. We describe a versatile, adaptive, Wang-Landau MC method that can be used to design for substrate affinity, catalytic rate, catalytic efficiency, or the specificity of these properties. The methods are transferable to all biomolecules, can be systematically improved, and give physical insights.


Asunto(s)
Proteínas/química , Algoritmos , Química Computacional , Interpretación Estadística de Datos , Simulación de Dinámica Molecular , Método de Montecarlo , Conformación Proteica , Pliegue de Proteína , Programas Informáticos , Termodinámica
8.
Sci Rep ; 10(1): 11150, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636412

RESUMEN

Computational protein design (CPD) can address the inverse folding problem, exploring a large space of sequences and selecting ones predicted to fold. CPD was used previously to redesign several proteins, employing a knowledge-based energy function for both the folded and unfolded states. We show that a PDZ domain can be entirely redesigned using a "physics-based" energy for the folded state and a knowledge-based energy for the unfolded state. Thousands of sequences were generated by Monte Carlo simulation. Three were chosen for experimental testing, based on their low energies and several empirical criteria. All three could be overexpressed and had native-like circular dichroism spectra and 1D-NMR spectra typical of folded structures. Two had upshifted thermal denaturation curves when a peptide ligand was present, indicating binding and suggesting folding to a correct, PDZ structure. Evidently, the physical principles that govern folded proteins, with a dash of empirical post-filtering, can allow successful whole-protein redesign.

9.
PLoS Comput Biol ; 16(1): e1007600, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917825

RESUMEN

Designed enzymes are of fundamental and technological interest. Experimental directed evolution still has significant limitations, and computational approaches are a complementary route. A designed enzyme should satisfy multiple criteria: stability, substrate binding, transition state binding. Such multi-objective design is computationally challenging. Two recent studies used adaptive importance sampling Monte Carlo to redesign proteins for ligand binding. By first flattening the energy landscape of the apo protein, they obtained positive design for the bound state and negative design for the unbound. We have now extended the method to design an enzyme for specific transition state binding, i.e., for its catalytic power. We considered methionyl-tRNA synthetase (MetRS), which attaches methionine (Met) to its cognate tRNA, establishing codon identity. Previously, MetRS and other synthetases have been redesigned by experimental directed evolution to accept noncanonical amino acids as substrates, leading to genetic code expansion. Here, we have redesigned MetRS computationally to bind several ligands: the Met analog azidonorleucine, methionyl-adenylate (MetAMP), and the activated ligands that form the transition state for MetAMP production. Enzyme mutants known to have azidonorleucine activity were recovered by the design calculations, and 17 mutants predicted to bind MetAMP were characterized experimentally and all found to be active. Mutants predicted to have low activation free energies for MetAMP production were found to be active and the predicted reaction rates agreed well with the experimental values. We suggest the present method should become the paradigm for computational enzyme design.


Asunto(s)
Enzimas , Método de Montecarlo , Unión Proteica/genética , Ingeniería de Proteínas/métodos , Especificidad por Sustrato/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Azidas/química , Azidas/metabolismo , Sitios de Unión/genética , Catálisis , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Metionina/análogos & derivados , Metionina/química , Metionina/metabolismo , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Mutación/genética , Norleucina/análogos & derivados , Norleucina/química , Norleucina/metabolismo
10.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543809

RESUMEN

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Asunto(s)
Biología Computacional/educación , Biología Computacional/métodos , Investigación/educación , Humanos , Proyectos de Investigación , Estudiantes , Universidades
11.
Sci Rep ; 7(1): 15873, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29158504

RESUMEN

Gene pairs that overlap in their coding regions are rare except in viruses. They may occur transiently in gene creation and are of biotechnological interest. We have examined the possibility to encode an arbitrary pair of protein domains as a dual gene, with the shorter coding sequence completely embedded in the longer one. For 500 × 500 domain pairs (X, Y), we computationally designed homologous pairs (X', Y') coded this way, using an algorithm that provably maximizes the sequence similarity between (X', Y') and (X, Y). Three schemes were considered, with X' and Y' coded on the same or complementary strands. For 16% of the pairs, an overlapping coding exists where the level of homology of X', Y' to the natural proteins represents an E-value of 10-10 or better. Thus, for an arbitrary domain pair, it is surprisingly easy to design homologous sequences that can be encoded as a fully-overlapping gene pair. The algorithm is general and was used to design 200 triple genes, with three proteins encoded by the same DNA segment. The ease of design suggests overlapping genes may have occurred frequently in evolution and could be readily used to compress or constrain artificial genomes.


Asunto(s)
Secuencia de Aminoácidos/genética , Biología Computacional , Genoma/genética , Secuencia de Bases/genética , Clonación Molecular , Sistemas de Lectura Abierta/genética , Dominios Proteicos/genética , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...